I think there are about 25,000 genes in the human genome but the annotated human genome says there are 45,000 and many scientists claim there are a lot more genes. Why is there a controversy over the number of genes? (pp. 136-137)
I'm talking about the molecular gene. The Mendelian gene is used in genetics and it's similar to the definition Richard Dawkins uses in his book The Selfish Gene. (pp. 138-139)
The latest count is 18,407 proteins detected and 1,343 probable proteins that haven't yet been found for a total of 19,750. (pp. 142-143)
[How many proteins in the human proteome?]
The functions of protein-coding genes
There are about 10,000 housekeeping genes that encode the proteins required for basic metabolic processes. (pp. 143-144)
Historical estimates of the number of genes
Historical estimates predicted that the human genome would have about 30,000 genes and those estimates turned out to be approximately correct. Guesstimates about larger numbers of genes (e.g. 100,000) were not based on facts. (pp. 144-146)
[False history and the number of genes: 2016]
Confusion about the number of genes
The popular press claimed that knowledgeable scientists were predicting 100,000 genes but that's not correct. (p. 147)
[Nature falls (again) for gene hype]
A typical protein-coding gene is 61,700 bp long but most of this is introns. Coding regions occupy about 1% of the genome and introns take up 37%. Genes account for 45% of the genome when you add in the noncoding genes. This number is not widely reported in the popular press. (pp. 149-151)
Introns are mostly junk
The weight of evidence strongly favors the view that most of the DNA in introns is junk. The splice sites and the minumum amount of DNA required to form a loop suggest that only 50 bp in each intron is functional DNA. (pp. 151-152)
[Are introns mostly junk?] [Are splice variants functional or noise?]
Box: Yeast loses its introns
Yeast has lost most of its introns since it diverged from other fungi. Most of the rest can be deleted without causing any decrease in fitness but a few seem to be essential. More that 98% of the introns in yeast are dispensible, confirming the idea that introns are mostly junk. (pp. 153-154)
[Yeast loses its introns]
Biologically relevant alternative splicing occurs when splicing factors alter the activity of the spliceosome. Splicing errors are common and mispliced transcripts (junk RNA) are easily detectable and entered into the transcript databases. (pp. 156-160)
Box: The false logic of the argument for complexity
If alternative splicing is going to solve the Defalted Ego Problem then it must distinguish humans from other species. But all species produce abundant transcripts due to splicing errors so humans are no different than nematodes or flowering plants. (pp. 166-167)
[Alternative splicing in the nematode C. elegans]
Alternative splicing and disease
Genetic diseases can be caused by errors in splicing. Their widespread occurance is taken to be proof that alternative splicing is ubiquitous, but disease-causing splice errors can also occur in junk DNA. (pp. 167-169)